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PREFACE

In recent years there has been increasing interest in harnessing
the resources of the sea to supplement and replace those being
gradually depleted on the continents of the earth. The anticipated
increase in effort that will be directed in the future towards the
extraction of vital minerals and food from in and beneath the sea
will necessitate the design of adequate structures to support these
activities.

Circular cylindrical piles are frequently used as structural
support members for offshore installations. In order to adequately
design these structures, both for safety and economy, the contri-
bution of the effects of pile surface roughness on the wave forces
on such piles should be known. Since apparently no direct studies
involving surface roughness effects on wave forces on piles have
been published, it is hoped that the results of this report will
help to fill a deficiency in the literature available on this

timely and important subject.






ABSTRACT

Circular cylindrical piles are commonly used structural members
in marine applications. When these piles endure sustained exposure
to a marine environment, corrosion deposits and marine organisms
accumulate on their surfaces. The subsequent increase in surface
roughness would be expected to influence the friction, form and
inertia drag characteristics of the pile when subjected to wave
action. This influence, in turn, would be expected to have an
effect on the magnitude of the force developed on the pile.
Apparently, no previous attempt has been made to evaluate the
effects of surface roughness on wave forces developed on piles
when subjected to the nonsteady flow conditions inherent in wave
motion. This report is an attempt to help fill this void in the
literature so that marine structural installations may be more
satisfactorily and economically designed.

In order to obtain a measure of the effects of surface rough-
ness, a series of wave tank experiments were performed on a circular
cylindrical pile whose outer surface roughness was varied by
gluing sand grains of designated size ranges onto jts surface.

Each experiment consisted of sending a train of monochromatic



iv

waves of a selected length and height combination past the model
pile and recording measured water surface elevation, horizontal
force and bending moment time histories. These records were then
analyzed using the semi-empirical approach of Morison to evaluate
drag and inertia coefficients. Other semi-empirical approaches
were also investigated which included correlating a coefficient

of resistance with an acceleration modulus and an attempt to corre-
late drag and inertia coefficients for different dearees of surface
roughness using a period parameter. The Tinear wave theory was
used in evaluating the water particle kinematics.

The accuracy of the semi-empirical methods was found to be
insufficient to measure the effects of surface rouahness. However,
the measurements of average maximum wave force for each experiment
indicated that surface roughness has a definite effect on the
magnitude of force as would be expected. The effects of surface
roughness were evaluated on the basis of comparina the ratio
Fr‘nr,/Fms obtained for a given rough surface experiment with the
value of unity applied to the correspondino smooth surface experi-
ment as a control. Here, F&r is the average modified maximum
force obtained for a given rough surface experiment and it includes
a reducing correction to compensate for the increase in pile
diameter due to the presence of the sand grains; F.o 1S the average
maximum force obtained from a corresponding experiment on the
smooth pile. For relative roughnesses, ¢/D, of 0.0675, 0.0186

and 0.0361, the indicated increases in the overall averages of



F!' /F _, compared with unity for the smooth surface, were -1,

mr-  ms
4 t6 5.7 x 10%

9 and 14 percent, respectively, for the 0.73 x 10
range of modified Reynolds numbers studied. Here, e is the average
sand grain diameter and D is the diameter of the pile including
the sand grains.

If no reduction in the pile force is made to correct for the
added increment of pile diameter due to the presence of the sand
grains, the overall average increases in the ratio of forces

obtained from the experiments using relative roughnesses of 0.0075,

0.0186 and 0.0361 are 1, 13 and 23 percent, respectively.
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CHAPTER T
INTRODUCTION

Marine structures, such as piles, which undergc sustained
expasure to a water environment accumulate corresion deposits and
marine organisms which increase the roughness of their surfaces.

A number of papers have appeared in the Titerature which dwell on
the subject of wave forces on piles, but only a few have considered
the effects of roughened surfaces. Moreover, the investigations
which considered surface roughness have been restricted to the
regime of steady flow. The flow field resulting from wave action
is oscillatory in nature and, therefore, unsteady. To the writers'
knowledge, no account of a previous attempt to evaluate the effects
of surface roughness on wave forces on piles has appeared in the
literature.

The roughening of a pile surface subjected to wave action
would be expected to influence the friction and form draa charac-
teristics of the pile and, consequently, the magnitude of the force
developed on the pile. The objectives of the study reported herein
were to determine by experiment the nature and magnitude of the
effects of surface roughness on wave forces on piles and to attempt

to determine which particular parameters would best predict these



effects. To this end a series of wave tank experiments were
conducted on a circular cylindrical model pile whose outer surface
roughness was varied by gluing sand grains of selected size ranges
onto the surface. FEach experiment consisted of subjecting the
model pile to monochromatic waves of a designated height and length
combination and recording measured water surface elevation, hori-
zontal force and bending moment time histories. These records

were then analyzed using several methods of approach in order to

evaluyate the effects of surface roughness.



CHAPTER 11
LITERATURE SURVEY
Status of Previous Research

No published information presenting the effects of surface
roughness on wave forces on marine structures has been found in
the literature. However, some investigators have studied related
aspects of the problem such as: experimental investigations of
drag forces on rough cylinders in steady flow; special studies
involving unidirectional acceleration of a fluid past a smooth
cylinder; and development of various techniques of analyzing the
data characteristically obtained in studies invelving wave forces on
structures. Some of these studies will be discussed in this chapter.
The nonsteady motion of the water particles, coupled with
their oscillatory behavior in response to wave motion, has, so
far, prevented any rigorous mathematical treatment of wave and
pile interactions of a general nature. Furthermore, the gathering
and analysis of experimental data is complicated by this unsteady
aspect of the motion. As a result, it has been necessary to rely
on semi-empirical, statistical and dimensional analysis methods

in predicting wave forces on piles and submerged objects.
Roughened Surfaces in Steady Flow

One of the earliest accounts of an attempt to evaluate surface



roughness effects was presented by Fage and Warsap [1]*. They
evaluated drag coefficients, CD’ for steady flow conditions, from
wind tunnel experiments using smooth and roughened cylinders. A
portion of their data is shown in Fig. 1 where the drag coefficient
has been plotted as a function of Reynolds number, ubD/v, for varying
degrees of relative roughness, ¢/D. Here u is the horizontal fluid
velocity, D is the diameter of the cylinder, v is the kinematic
viscosity of the fluid, and ¢ is the average surface roughness
height. The data show that the transition Reynolds number decreases
as the cylinder surface is made rougher and also that the decrease
in drag coefficient at transition is Tess as the roughness is
increased.

A more recent study of the effects of surface roughness for
conditions of steady flow has been published by Blumberg and
Rigg [2]. Their investigations involved the towing of a cylinder
with selected surface roughnesses in the high-speed towina tank of
the Naval Ship Research and Development Center, Drag coefficients
were evaluated for supercritical Reynolds numbers in the range of

1 x 10°

to 6 x 106. They found that CD remained essentially constant
for a given surface roughness but increased with increasing rough-
ness from 0.59 for a smooth cylinder tc 1.02 for the same 3-ft.
diameter cylinder covered with bitumastic and oyster shell with

concrete fragments.

*
Numbers in brackets designate references at the end of the
report,
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Fig. 1 Cn versus Reynolds number for steady
flow arouRd cylinders (after Fage and
Warsap [1])



Studies Involving Unidirectional Acceleration

Iversen and Balent [3] performed experiments on discs accel-
erated vertically in still water. In analyzing their data, the
velocity was taken to be linearly dependent upon acceleration and

the force on the disc, F, was expressed by the relation
F=C 1/20v%A (1)

where ¢ is the density of the fluid, v is the vertical velocity,
A is the area of the disc and C is designated the coefficient of
resistance.

The coefficient of resistance was shown to be, in general,
a function of geometry, Reynolds number, vD/v, Froudes moduius,

v2/gD, and an acceleration modulus, aD/vz; j.e.,

2

- yb v_ aD
C = f1(geometry, > oo ;g) (2}

where D, the diameter of the disc, is shown here as a characteristic
length, g is the acceleration of gravity and a is the acceleration
of the body in the fluid.

For their particular studies involving discs, Iversen and
Balent obtained good correlation of C with acceleration (Iversen's)
modulus.

Kiem [4] performed experiments on cylinders of various length-
diameter ratios by accelerating them vertically from rest in water
using constant drive forces. In this case a correlation was

found to exist between the coefficient of resistance and accel-



eration modulus, using Reynolds number and the Tength-diameter
ratio, A/D, as parameters; i.e.,
c=f,0L 3B 4 (3)

Laird, Johnson and Walker [5] performed experiments to determine
possible effects of acceleration and rates of change of acceleration
on the forces exerted on horizontally mounted, circular cylinders
immersed in water and moved horizontally normal to their long
axes. The accelerations and velocities used were commensurate
to those encountered in ocean waves. Both constant and variable
Tinear accelerations and decelerations were used. In the case of
a single horizontal cylinder, the drag coefficients, CD, agreed
with similar values obtained from plots of drag coefficient versus
Reynolds number for conditions of uniform motion. However, when
the cylinder was decelerated deviations of the drag coefficient
from accepted values for uniform motion occurred. They also
found that the acceleration modulus, aD/uz, failed to correlate
with the resistance coefficient, C, near boundary layer transition.

Sarpkaya and Garrison [6] have investigated the case of a
circular cylinder subjected to unidirectional flow with constantr
acceleration. For these conditions, they found the drag coefficient,
CD, and the inertifa coefficient, Cm’ to be a function of the
relative displacement of the fluid, q/D, where g is the total flow
displacement. Their results yielded evidence that CD and Cm are
interrelated and, for the case of constant acceleration, they

showed analytically that a relationship exists between CD and Cm.



Semi-empirical Methods

The most commonly used method of treating wave forces on piles
is that due to Morison, 0'Brien, Johnson and Schaaf [7]. The
horizontal wave force is assumed to consist of two components —
one representing the drag force and proportional to the square of
the horizontal particle velocity; the other representing the inertia
(virtual mass) force and proportional to the horizontal particle
acceleration. It is assumed that the drag.and inertia components
are mutually independent and can be added linearly. Expressing
this mathematically for a differential force, dF, acting over a

differential segment of a rigid vertical pile, dy, the equation is

- pnD?y du 1)
dF [cm( ) st t Cp 5 lulu) dy (4)

where D is the diameter of the pile, u is the horizontal component
of the particle velocity in the absence of the pile and ¢ represents
time.

The equatioﬁ for differential moment, dM, about the bottom

of the pile is

M = (d + y)dF (5)
where d is the still water depth and y is the depth below the
still water measured negatively downward.

Fquations (4) and (5) and their integrated forms have been

extensively used in determining values of CD and Cm for use in



the design of piles subjected to wave action. The procedure

involves the use of measured values of wave profile, wave force
and/or bending moment along with the analytically determined particle
velocity and acceleration in the above equations. When this is

done, CD and Cm become the unknowns. Then by judiciously selecting
the value of force or moment recorded when the drag and inertia
contributions individually become zero, CD and Cm may be calculated.

The above semi-empirical procedure has been employed by many
investigators in handling the wave-force-pile problem. It was
used by Morison, Johnson, and 0'Brien [8] in analyzing the results
from wave tank studies of forces on piles. Also, Wiegel, Beebe
and Moon [9] used the same procedure to analyze the results of a
rather extensive prototype test program. Both groups of investi-
gators used the Airy theory for waves of low steepness to describe
the particle motions in order to evaluate CD and Cm'

The application of the Morison approach using wave theories of
finite steepness to determine the separate drag and inertia contri-
butions to total pile force has been employed by Reid and
Bretschneider [10] for a range of waves in shallow, intermediate
and deep water. The drag and inertia coefficients were determined
on the basis of field data.

An alternate method of using equation (4} is to calculate the
kinematic flow field using the stream function representation

presented by Dean [11]. Dean's stream function theory is appli-
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cable to nonlinear ocean waves and, in turn, to symmetrical and
unsymmetrical nonbreaking waves. Aagaard and Dean [12] employed
this representation in their mathematical model for calculating
ocean wave forces on offshore drilling structures.

The coefficients of drag and mass obtained by the Morison
approach, using measured forces and moments in equation (4) or
(5), respectively, possess a large amount of scatter when an
attempt is made to correlate them with Reynolds number. This has
led a number of investigators to seek alternate approaches to
hand1ing the problem of wave forces on piles.

Keulegan and Carpenter [13], retaining the basic Morison
equation (4), experimentally determined time histories of wave
forces on horizontal cylinders and rectangular plates Tocated
at the node of a standing wave. The average drag and mass cO-
efficients over an entire wave length were then obtained through
a Fourier analysis of the forces obtained. These coefficients
showed no correlation with Reynolds number, but were found to
possess definite dependencies on the so-called period parameter,
UmT/D, where Um is the maximum velocity, T is the period of the
oscillations, and D is the diameter of a cylinder or the breadth
of a rectangular plate.

Wiegel [14] compared the empirical plots of Cy and C_ versus
UmT/D obtained by Keulegan and Carpenter for cylinders with field
data reported by Wiegel, Beebe and Moon [9] and Reid [15] for a

circular cylindrical pile. In the case of CD, the empirical curve



11

of Keulegan and Carpenter was found to yield an approximate upper
envelope for the field data. On the other hand, the empirical
curve for Cm was found to be an approximate lower envelope for the
field data.

Harleman and Shapiro [16] proposed another procedure for
correlating experimental data and predicting forces on prototype
piles. They retained the Morison approach, but they used the.
MacCamy-Fuchs [17]) diffraction theory for evaluating the inertia
component and obtained the drag contribution on the basis of
a steady state drag coefficient. They found that the dearee of
correlation between experimental and theoretical results was a
function of the relative contributions of drag and inertia to the
total force. Generally speaking, the agreement between theory and
experiment was good, although in the 1imited range from 50 to 75
percent drag component the experimental values averaged 24 percent
less than the theoretical values.

Crooke [18] applied the Iversen approach to published and
unpublished horizontal wave force data of Morison, et. al. [7, 8]
for model horizontal cylinders, vertical cylinders and spheres
in oscillatory flow. He obtained reasonable correlation of C with
Iversen's modulus for each geometrical model except for values of
Iversen's modulus below about 0.1. No attempt was made to correlate

C and Iversen's modulus for the case of actual field data.
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Statistical Studies of Wave Forces

A number of investigators, for example, Bretschneider [19],
Pierson and Holmes [20], Borgman [21] and Brown and Borgman [22]
have studied the statistical distribution of wave forces on cylin-
drical piles. A fairly recent paper by Jen [23] applies some of
these theories to statistical analyses of wave forces resulting
from the action of irreaular waves on a model pile.

Since this study is concerned with monbchromatic waves,

statistical approaches will not be further discussed.
Dimensional Analysis Approaches

Priest [24], questioning the relevance of so much attention
to CD and Cm on the part of some investigators, proposed that a
purely experimental approach be taken and that the resulits be
presented using dimensionless parameters including phys.igal
guantities pertinent to the problem. He then collected data from
wave tank experiments to determine pressure intensities on the
surface of a vertical cylinder that was subjected to the action
of smooth shallow-water waves and to the action of shallow-water
breaking waves of the spilling type. The data for smooth waves
(the only waves of interest here) were graphically presented n

dimensioniess form using the function:

) =0 . (6)

a|T

h P
f3(H’ "'Y_dg
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where h is the height of the center of the pressure transducers
above the bottom of the basin, P is the pressure intensity, y is
the specific weight of the fluid and H is the wave height. Rather
well-defined plots were obtained.

Priest points out that, although there is no apparent in-
fluence of the pile diameter, D, in his results, it may be possible
that had substantially smaller values of a dimensionless parameter,
D/d, been attained in the tests, some influence of this parameter
may have been witnessed due to separation effects.

Paape and Breusers [25] recommended the establishment of
experimental relationships of certain dimensionless parameters
apropos to the wave and pile conditions. They performed model
experiments in a wave tank using square piles subjected to a
range of wave conditions, water depths and pile dimensions. The

data were plotted on the basis of

max _ H d H
~oot = Talp gz g7 (7)

where Fmax is the maximum wave force in the direction of wave
motion.

The data provided a fairly distinct evaluation of the effects
of each parameter and indicated H/D as a good independent variable
for use in wave-pile studies.

The test program incliuded experiments on different model
scales and, although some data scatter were present, there were

no scale effects observed using this method.



CHAPTER IT1
THEORETICAL CONSIDERATIONS
The Morison Equation

The so-called Morison equation (4) which was presented in
the previous chapter arises from a more fundamental form which
will now be developed. The expression for the incremental hori-
zontal force, AF, acting on an incremental é1ement of a rigid
cylindrical body, due to accelerated flow past the body, may be

expressed as the sum of three terms as follows:

oF = o(av,) KU, §(Pcos «)dS + 172 Cop(aA)[ulu  (8)

where Avm is the volume of fluid displaced by the incremental
element of the pile; dS is an elemental surface area; P is the
fluid pressure in the absence of the pile; o is the angle between
the flow direction and a normal to the surface of the pile; aA is
the projected area of the incremental pile element perpendicular
to the velocity: and k is the virtual mass coefficient.

For the special case of a circular cylindrical pile, we may
write the differential force acting on a differential segment of

the pile, dy, as

dF = [p(ﬂ-gi) dika) , §(Pcos a)ds + 172 CDpD[ull]dy (9)

where ds is the incremental area per unit length of the pile. The

three terms appearing on the right-hand side of the above equation

14



constitute the added mass, pressure gradient, and viscous drag
contributions to the net incremental force, respectively.

The virtual mass coefficient, k, is a time dependent factor
which, when multiplied by the volume of the fluid dispiaced by
the pile, gives the effective mass of fluid accelerated in the
flow field surrounding the pile. The value of k is one for a
circular cylinder in a field of botentia1 flow. However, in the
case of a real fluid flowing past a pile, the value of k will vary
depending upon the prior history of the fluid motion, the fluid
viscosity and the surface roughness of the pile since each of
these factors influences the flow pattern at any given time.

The pressure gradient term arises due to the force exerted
on the pile as a result of the fluid accelerating in the flow
field to which the pile is subjected. Since the mass of fluid
displaced by the pile would experience an acceleration, due to
the pressure gradient, equal to that of the ambient fluid, the

second term of equation (9) may be written

2 (
§Pcos a ds = p[E%—]g% (10)

If equation (10) is now substituted into equation (9) and
the additional assumption is made that k is constant with time,

then
wD? du CD
dF = (] +k) p-—-4 a-€+:—2—-p0|u|u dy. (”)

Usually the quantity (1 + k) is combined to form a single

constant, Cm, which is called the coefficient of mass or inertia

15
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and the resulting equation becomes the expression commonly

referred to as the Morison equation; i.e.,

dF = l:cmp 02y, E% pD|u|l]dy. (12)
The coefficient Cm thus absorbs the effects of inertia and pressure
gradient as well as the u dk/dt term arising in equation (9).

As was shown in Fig. 1, the drag coefficient, Cyo for steady
flow is dependent upon the geometry, Reynolds number and the
relative roughness. Moreover, for conditioﬁs of steady flow, the
critical Reynolds number, where the drag coefficient experiences
a sharp decrease, also depends upon the relative roughness. This
sharp decrease in C, occurs when the boundary Tayer becomes
turbulent and the separation point shifts downstream.

In the case of unsteady flow, cuch as occurs in the oscil-
latory behavior of water particles in response to wave motion,
the shift in separation point and the resulting decrease in CD may
not occur. The turbulent eddies which are generated and then
swept back past the pile due to wave action may result in a
turbulent boundary layer at substantially lower Reynolds numbers
than are typical of steady flow.

In order to apply equation (12), numerical values of the
coefficients Cm and CD are required. These coefficients are
cbtained by measuring wave force and wave surface time-histories
experimentally and using these data in conjunction with analytical

exprassions for particle velocity and acceleration to solve for



the coefficients. In this semi-empirical method it is assumed
that the drag and inertia coefficients are constants and mutually
independent. Thus, the drag coefficient, Cy., is unaffected by
the magnitude, direction and rate of acceleration of the fluid.
Furthermore, both CD and Cm are assumed invariant with depth in
the fluid.

Also implied in the application of equation (12}, using the
semi-empirical method to be described, is the Froude-Kriloff
hypothesis discussed by Korvin-Kroukovsky [26] and Beckmann [27]
which assumes that the wave height, length and period are not
affected by the presence of the pile itself. This condition holds
when the diameter of the pile is small compared with the wave

length.

The procedure for applying equation (12) will now be outlined.

Evaluation of Drag and Inertia Coefficients

fig. 2 shows a geometrical sketch of a wave train and pile
along with a designation of the sign convention employed in the
equations used. The origin is chosen at a point corresponding
to the still water level at the crest position.

The method of evaluating CD and Cm will be presented on the
basis of using the linear wave theory for small amplitude waves.
Higher order wave theories could, in principle, be applied in
an analogous manner. However, the laboratory studies of Morison

and Crooke [28] and Le Mehaute, Divoky and Lin [29] indicate that

17
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the more complicated representations would not predict the velocities
or accelerations with much, if any, more accuracy than do the
corresponding equations for the Tinear theory.

If the wave profile is taken as sinusoidal, then for a fixed
point in the flow field, say at x = 0 for convenience, the

surface elevation, n, may be expressed as a function of time, t,

by

n = g-cos 2%2 - (13)

By solving Laplace's equation,

w24 =0 (14)
for potential flow and imposing the boundary conditions applicable
to small amplitude, Tinear wave theory, the velocity potential,
¢, may be obtained. 0nce an expression for ¢ is known, the
particle velocities and accelerations are readily available through
straightforward differentiation of the velocity potential. The
detailed derivations are given by Kinsman [30] and since the
solutions for the linear wave theory are well-known, the complete
development will not be included here. The equations are presented
in the form given by Wiegel [14] and employ the Eulerian description
for conditions at a point in the fluid.

The expression for the horizontal particle velocity at a

fixed point x = 0 in the flow field is

_ 7K cosh [2n{y + d)/L] 2nt
T sinh Zxd/L €os =5 (15)

where y is the distance measured negatively downwards from the



sti1l water Tevel to the water particle.
The water particle total acceleration for two-dimensional flow

is given by

%% = %%—+ u %§-+ v %g- (16)

where u and v are the water particle velocities in the x and y-
directions, respectively. For linear theory, the field accel-
erations are small compared with the local acceleration and,
therefore, are neglected (see reference [14]). The water particle

acceleration then becomes

3u _ _ 2u%H cosh [2n(y + d)}/L] .4 2nt . (17)
3t T? sinh 2nd/L T

Two other guantities of interest in studying water particle
kinematics are the total horizontal and vertical orbital displace-
ments of the particles. Still using linear theory and choosing
a convenient point x = 0 in the flow field, the expression for the
total horizontal particle displacement is

cosh[21r(y0 +d)/L] ot
§ = H—sfrzrarr— ST" 7 (18)

where Yo is the mean vertical coordinate of the water particle
for a given orbit,
The corresponding expression for the total vertical displace-

ment of a particle is
sinh[Zn(yO + d)/L] 9.t

= H a0 T (19)

5t
In order to evaluate the total force acting on a pile sub-

jected to wave action, the expressions for u and su/at are sub-

20
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stituted into equation (12) and the resulting expression is
integrated, assuming constant CD and Cm, to obtain the resultant

horizontal force. This inteération yields

HeL | _mD 25t

- 1 : nt (20)
F =m0 w1 -~ 77 Csz sin =3

1 og 2rty g 21t
+ €Ky |cos =5 |cos =%

where

4ﬁSs ) 4nSS
Ki - ( L ) + S1nh( L ) . (21)

Is[sinh(gf—d—m

ZnSS
sinh T
Ky = —<imh 22d (22)
L

SS = n + d. (23)

Equation (20) may now be empioyed to evaluate the drag and
inertia coefficients. The quantity 2nt/T may be treated as a
phase angle, 6, and using the coordinate system described in Fig.
2, 8 is defined to be zero degrees at the crest position of the
wave and 180 degrees at the trough position. Referring to equation
(20) it may be observed that when 5 = 2rt/T is zero and 180 degrees,
the inertia contribution to the total force is zero. On the
other hand, when 8 equals 90 and 270 degrees, the drag contri-
bution to the total force is zero. Therefore, by inserting
measured values of F, H, L, T and S, along with known values of
o and D into equation (20) at a time corresponding to that at the

crest of the wave (8 = 0°), the value of Cy may be calculated.
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Likewise, by making similar substitutions at a time when & equals

90 degrees, the value of Cm may be calculated.
Relationship Between Dimensionless Parameters

Equation (12) may be rewritten in the form,

2 ‘;—F D %‘i -
_ ) t _
pDu,g_ =c % [’“‘T‘u + €y = C. (24)

The quantity in brackets may be recognized as Iversen's modulus

or the acceleration modulus and C is the total resistance co-
efficient. Crooke's [18] studies of wave force data obtained from
experiments on model cylinders showed Iversen's modulus to
correlate C fairly well — at least to the extent of defining the
shape of a curve.

The parameter UmT/D was found by Keulegan and Carpenter [13]
to correlate values of CD and Cm obtained as average values over
an entire wave length for oscillatory flow past a cylinder. Here
Um is the maximum horizontal particle velocity.

Wilson [31] has demenstrated that Iversen's modulus and the
Keulegan and Carpenter period parameter are related through the
expressions for particle velocity and acceleration, equations (15)

and (17). The relationship is

2T 2n (25)
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Furthermore, Wiegel [14] has shown that for the linear theory,

AT (26)
D B

The significant aspect of the above discussion is that
Iversen's modulus and the Keulegan and Carpenter parameter are
different ways of expressing the same thino, namely the ratio of
the relative total horizontal particle displacement to the diameter
of the pile. It is also worthy of note that the investigations
of Sarpkaya and Garrison [6] and those of Paape and Breusers [25]
in each case revealed a ratio of particle displacement to the
diameter of the immersed body as a significant parameter to use

in wave force data correlations,
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CHAPTER 1V

EXPERIMENTAL PROCEDURE

Arrangement of Equipment

The experiments were conducted in a two-dimensional wave
tank equipped with a mechanical wave generator driven by a
variable speed electric motor. A sketch of the wave tank facility
is shown in Fig. 3. The motor speed and paddle stroke arm length
were set at a required combination of values to produce the
desired wave height and iength characteristics for each test run.
The nominal dimensions of the wave tank are 2 ft. wide by 3 ft.
deep by 120 ft. long. The wind, current and probe carriage
capabilities of the wave tank were not used.

The arrangement of the laboratory equipment used is shown
schematically in Fig. 4. A photograph of the actual operational
system is presented in Fig. 5. The experimental apparatus consisted
of a model pile which was mounted rigidly to a supporting frame
and extended vertically downward into the wave tank. The lower
end of the model pile cleared the bottom of the wave tank as
indicated in Fig. 4. The water depth was set at 2 ft. The test
pile was located 56 ft. from the wave generator and monochromatic
waves of selected height and length combinations were mechanically
generated at the pile.

The model pile was instrumented so that measurements of wave
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Fig. 5 Actual arrangement of
the experimental equipment
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force and bending moment could be accomplished by the use of strain
gages mounted at selected sections of the pile. The instrumented
pile consisted of essentially four sections {see Fig. 4): (1)

an upper strain gage section, (2) a lower strain gage section, {3)
an interconnecting portion of pile between the upper and lower
strain gage sections, and (4) a lower section of pile which con-
stituted the section on which the variations of pile surface
roughness were made. The measurements of wave force and bending
moment about the midpoint of the upper gage section were obtained
as continuous time histories on a direct writing Sanborn 150 Dual
Channel Carrier Amplifier-Recorder.

Only the lower pile section projected into the water. This
particular configuration permiftted all of the instrumentation to
be located well above the water level and allowed the bottom pile
section to be unbolted and removed. This Tatter feature permitted
the removal of one roughness from the pile surface and the
application of the next without risking damage of the instru-
mentation.

Two capacitance-type wave gages were employed to measure
the wave surface elevation time-histories, One wave gage was
located at the pile and thus recorded the wave phasing with respect
to the force and moment traces. The second wave gage was situated
7 ft. upstream from the test pile and recorded the undisturbed
surface time-histories of the approaching waves. The distance

of 7 ft. was chosen so that there would always be less than two



29

full waves between the wave gages, thus facilitating identification
of common physical points on the two wave traces. The fixed
distance between the two gages, in turn, allowed the wave length
to be readily calculated since both traces were recorded with
respect to a common time.

The water temperature was measured with a thermometer at the
time each experiment was performed.

More complete details of the instrumentation design and data
reduction techniques will be aiven in later portions of this

paper.

Water Conditions

Sodfum dichromate was added to the water in the wave tank
to serve as a corrosion inhibitor.

Density comparisons of the sodium dichromate solution and
distilled water were made using a pycnometer and analytical balance.
It was found that the density of the sodium dichromate solution
slightly exceeded that for distilled water, but the two values
differed by only 0.05 percent.

Measurements of dynamic viscosity, u, were also made of the
sodium dichromate solution and distilled water using an Ostwald
viscosimeter. A comparison of the viscosities obtained for the
two fluids indicated that the viscosity of the sodium dichromate
soTution was larger than that for distilled water by about 1.8

percent.
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The above changes in density and dynamic viscosity were
considered inconsequential in view of other factors influencing
experimental accuracy. Therefore, the values of density and kine-
matic viscosity, v = u/p, used in analyzing the experimental data
were taken to be those readily available in tables for distilled

water.
Wave Gages

The capacitance-type wave gages used in the experiments
operate on the basic principle of a variable capacitor. A metal
wire with a dielectric coating is mounted rigidly onto a supporting
frame as indicated in Fig. 4. The metal wire inside the dielectric
acts as one plate of the capacitor and the water surrounding the
dielectric forms the other plate. As a wave moves past the gage,
the change in water elevation along the dielectric coated wire
varies the capacitance. By wiring this capacitor into the arm of
a Wheatstone bridge and employina the necessary auxiliary circuitry
and calibration, the wave record may be obtained on a direct
writing recorder. The particular dielectric coated wire used
was 8062, "No. 20 Hvy. Polythermaleze," manufactured by Belden.

The recorder used was a Hewlett-Packard Model 321 Dual Channel
Carrier Amplifier Recorder. The circuitry for this system 1is
diagramed and explained in Appendix 1. Other descriptions of
similar type wave gages have been presented by Killen [32], Hsu

[33], and Harleman and Shapiro [16].
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The wave gage calibrations were obtained by adjusting the gains

on the recorder amplifiers so that a known displacement of relative
water level would give a convenient stylus deflection on the chart.
The calibrations were checked before and after each experiment.

A typical wave gage calibration for one experiment is presented

in Fig. 6. The solid Tine represents the average of the calibratio
measurements made before and after an experiment was performed.
Usually good agreement was obtained between the two sets of
readings after correcting for a cmall amount of recorder drift.

The gage wires were cleaned before the calibration check preceding
each experiment. Also, the water was allowed to settie to a

calm state prior to performing the calibration routine both before

and after an experiment was executed.
The Model Pile

The detailed dimensions and assembly of the test pile are
given in Fig. 7.

The interconnecting and lower piie sections were made from
6061-T6 aluminum tubing. The flanges which were welded onto these
two portions of the apparatus were cut from 6061-T6 aluminum plate
material. The upper and lower strain gage sections, designated
No. 1 and No. 2, respectively, in Fig. 7., were machined as one

piece, along with their flanges, to the required dimensions from

n
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7075-T6 bare aluminum stock. The mounting positions of the strain
gages on the gage sections are shown in Fig. 7.

The natural frequency of the assembled pile in its installed
position with 2 ft. of water in the wave tank was approximately
4.5 cps. With the tank drained of water, the natural frequency
was around 5.5 cps. The frequencies of the water waves were
between 0.6 and 1.24 cps; therefore conditions of sustained
resonance were excluded.

The pile apparatus was equipped with alignment pins and

machined indexes in order to assure that it would always be

assembled in the same manner. The flange bolts were each tightened

to a uniform torque of 150 in-1bs using a torque wrench so that
the strain gage sections would not experience nonuniform stresses
as a result of being assembled.

The lower main test section of the pile was machined so that
the outer surface formed a true circular cylinder. The test
section was then smoothed and highly polished in preparation for
the experiments with the smooth surface. The smoothing was
accomplished by starting with 320 carborundum wet or dry abrasive
paper and then using progressively finer paper until the final
smoothing using 500 grit was done. The pile surface was then
poTished with No. 39925 Hoppich Semichrome Polishing Paste. The
final outside diameter of the smooth pile was 3.716 in. Fig. 8
shows a photograph of the smooth, polished pile. For the axperi-

ments involving the roughened pile surface, sand grains were glued
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Fig. 8 The smooth pile
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onto the same cylindrical pile that was used for the smooth surface

experiments.
Strain Gage Section Design

The sections on which the strain gages were mounted had to
be thin enough to provide measurable amounts of strain in response
to the relatively small applied wave forces. At the same time,
the gage sections had to be stiff enough to restrict the pile
deflections to small values so that the pile accelerations could
be neglected in analyzing the data. In order to satisfy these
requirements, the cross section should have as large a radius of
gyration as possible. A thin-walled circular cylinder was selected
for the gage section geometry since its cross section has a rela-
tively large radius of gyration and it can readily be machined
with precision.

Preliminary calculations indicated that the wave forces
which would be acting on the smooth pile should not exceed a
magnitude of 5 1bs. The effects of pile roughness were unknown,
but a design force of 7 lbs. was helieved to be a conservative
estimate of the maximum force which the pile would have to sustain
in the experiments.

Imposing the requirement that the pile deflection be restricted
to a small value, the gage sections were designed so that a
7-1b. applied load would not deflect the bottom of the pile

more than 0.1 in. This deflection criterion was somewhat arbitrary;
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Harleman and Shapiro [16] used a similar value with apparent
success in their studies. The results indicated that a wall
thickness of 0.0355 in. would experience 215 micro-strains. This
was considered adequate and the gage sections were machined to the

dimensions shown in Fig. 7.
Strain Gage Installations

The locations of the strain gages are shown in Fig. 7. Type
C6-141-B, 120 ohms, Budd strain gages were used. These gages have
a gage factor of 2.05 * 1/2%.

Strain gages 1, 2, 5 and 6 comprise a Wheatstone bridge of
four active arms wired so that its output is proportional to the
bending moment about the midpoint of the upper strain gage
cection. Referring to Fig. 4, this moment, M], may be expressed
analytically as

M1 = E%F (27)
where E% is the vertical distance between the point of application
of the resultant horizontal wave force and the midpoint of the
upper strain gage section. (The ?h notation shown in Fig. 4
complies with that obtained by an averaging technique described
in the next chapter.)

Strain gages 3, 4, 7 and 8 comprise a Hheatstone bridge of
four active arms wired so that its output is proportional to the
di fference in the bending moment about the midpoint of the upper

strain gage section, M1, and the bending moment about the midpoint



of the lower strain gage section, Mz. This allows direct measure-
ment of wave force, through a calibration, since, referring to
Fig. 4 and letting b equal the vertical distance between the

midpoints of the upper and lower strain gage sections,

Fz,

£ - b} = My - M, (28)

and, therefore,

Feto—2 (29)

where the subscripts 1 and 2 refer to the upper and Tower gage
sections, respectively.

The use of four active arms provides maximum output signal
and also provides automatic temperature compensation.

The circuit diagrams, along with an explanation of their

principles of operation, are presented in Appendix 1.
Calibration for Wave Force and Bending Moment

The calibrating system is pictured in the upper right-hand
portion aof the photograph in Fig. 9.

The instrumented pile was calibrated by applying dead weights
to a cord which transmitted the load through a system of pulleys
so that the force was applied to the pile in a longitudinal directi
parallel to the wave tank. The gains on the recorder amplifiers
were then adjusted to give a convenient reading on the chart per

unit of force and bending moment. Loads of varying magnitude were
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Fig. 9 Pile calibration system
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applied at different lengths of moment arm in order to check the
Tinearity with force and with moment arm. The calibration was
checked at the beginning and end of each day's running and spot-
checks were made each time the paper was changed in the recorder.
The calibrations were Tinear over a Targe portion of the range of
interest and only slight changes in the calibration occurred as

the test program progressed. Without exception, the calibration

for a particular day remained the same. The deviations in linearity
were accounted for, where applicable, in reducing the data. A

typical wave force calibration curve is shown in Fig. 10.
Sand Grains

A range of prepared surfaces from smooth to very rough was
studied. The initial set of experiments was performed on the
smooth, polished pile surface. The data obtained using the
smgoth surface served as a control for comparison of the results
obtained from a similar set of experiments ran on each of the
roughened surfaces,

Roughening of the pile surface was accomplished by qluing
sand grains of a designated size onto the surface of the pile
with lacquer. Good adherence of the grains to the pile was
achieved with onTy random dislodging of some grains due to the
wave action. The weight comparisons of the test section of the
pile before and after each set of experiments are shown in Table 1.

The sand grain size for a selected roughness was controlled
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Table 1

Comparison of weights of the bottom

pile section before and after testing

42

Surface type

Pile test-section weight

Before testing After testing Difference
Smooth 18 1bs, 12.5 oz 18 1bs, 12.5 oz -
Roughness No, 1 19 1bs, 6.0 oz 19 1bs, 5.8 oz 0.2 oz
Roughness No. 2 20 Ths, 4.5 0z 20 1bs, 3.8 0z 0.7 oz
3 21 1bs, 11.8 oz 21 1bs, 10.8 oz 1.0 oz

Roughness No.
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on the basis of preferred screening utilizing sieve openings
defined by the U.S. Bureau of Standards [34]. The sand size ranges
studied were:

Roughness No, 1, 0.0232 - 0.0331 in.,

Roughness No. 2, 0.065 - 0.0787 in., and

Roughness No. 3, 0.132 - 0.157 in,
Using average particle diameters, the relative roughnesses, e/D,
of the tﬁree roughened surfaces were 0.0075, 0.0186 and 0.0361.

Photographs of the three roughnesses are presented in Figs. 11,

12 and 13. The levels of roughness may be judged by considerina
roughness no. 3 to correspond approximately to that exhibited by

marine growth of 1.73 in. diameter on a 4-ft. diameter pile.
Wave Characteristics

The wave characteristics used in this study covered a range
of combinations of wave height, length and period. A set of experi-
ments on a particular pile surface consisted of 22 combinations.
By using a fairly wide range of wave characteristics, varying
degrees of drag and inertia contributions to the total wave
force could be obtained.

A summary of the wave characteristics, including the d/fé

and H_/L_ ratios, is presented in Table 2. Here ﬁ;, L,

and T,
are the average values obtained for wave height, Tength and period,
respectively, over the four sets of experiments. The corresponding

averages for a wave of a particular set may show some deviation
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Fig. 13 Surface roughness no. 3
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Table 2 Summary of average wave characteristics

Hy La T _ _
Mave d/La H /La
(in) (ft) (sec)
1 1.88 5.08 0.84 (.542 0.042
2 4.17 3.66 0.82 0.547 0.095
3 4,79 3.90 0.84 0.512 0.102
4 2.06 5.50 1.04 0.363 (.031
5 4,02 5.49 1.03 0.364 0.061
6 5.97 5,53 1.04 0.362 0.090
7 65.26 5.18 1.02 0.386 0.101
8 1.83 7.85 1.27 0.255 0.019
9 3.78 7.85 1.28 0.255 0.040
10 5.66 8.00 1.30 0.250 0.059
11 8.29 7.27 1.25 0.275 0.094
12 8.68 7.19 1.20 0.278 0.101
13 2.14 10.00 1.52 0.201 0.018
14 3.94 10.04 1.52 0.199 0.033
15 6.96 9,51 1.48 0.210 0.061
16 7.46 9.38 1.48 0.213 0.066
17 8.64 8.62 1.35 0.232 0.084
18 2.22 11.72 1.66 0.170 0.076
19 4,28 11.20 1.64 0.178 0.032
20 6.27 11.27 1.67 0.177 0.046
21 8.03 11.52 1.65 0.174 (0.058
22 9,78 10.65 1.56 0.188 1.077
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from that presented in Table 2. The waves were duplicated as
nearly as possible for the set of experiments involving each

selected surface roughness, but the duplication was not exact.

a7



CHAPTER V
DATA REDUCTION
Data Records

Fig. 14 shows a typical set of data traces obtained from the
direct writing recorders. The traces are continuous plots in time
of the variations of wave profile at the pile, wave profile seven
feet upstream from the pile, net horizonta1‘wave force acting
on the pile and the bending moment about the midpoint of the
upper strain gage section due to the applied wave force. Analysis
of the data presented in this report is based upon the two wave
profile traces and the wave force trace. The moment trace would
have provided an alternate measurement by which to analyze the
data had the force instrumentation failed. Also, the moment
measurement could have been used in conjunction with the force
measurement to determine the point of application of the net force

should this information have been needed,

As mentioned previously, the wave profile at the pile provided

the proper phasing of the wave and force traces. In order to make

48

the data consistent with the sign convention for which the equations

were written, each wave was considered to begin with a phase angle

of zero degrees at the crest. Each wave was divided into four

equal parts and the phase angles of 0, 9G, 180, 270 and 360 degrees

were assigned successively to the end points of the equal segments
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as indicated in Fig. 14. These phase angles were used in selecting
simultaneous values of force and surface elevation which were, in

turn, substituted into the equations for calculating Cp and C.
Evaluation of Wave Characteristics and Forces

The wave height, length and period for each experiment were
evaluated for each individual wave and then the average value of
each quantity was determined by averaging the results obtained for
a specified number of waves, N. The number of waves averaged was
established by determining the number required to make the average
wave height and maximum wave force approach a constant mean value
within 1 percent for all of the experiments. Twenty waves satisfied
this criterion in almost all cases: occasionally 21 waves were
required for an experiment. The average wave height and period
were determined from the wave record recorded 7 ft. upstream from
the pile, whereas the evaluation of the average wave length reguired
the use of the records obtained from both the upstream and the
pile position wave gages. The procedure for evaluating the wave
length will now be further explained.

Referring to Fig. 15, the common physical points at times
tA(l) and tA.(I) of the two wave profiles recorded a distance,
ﬂG’ apart were determined by inspection. Knowledge of the distance
between the wave gages and the approximate length of the wave
recorded were needed to make this determination. The time tB(l)

corresponding to one wave period earlier than tA(T) was located
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as shown in Fig. 15. Once the initial time values were selected,
the remaining values of tA(i), tA.(i) and tB(i) were marked as
indicated in Fig. 15. Since the records were made a fixed distance,
EG’ apart and were recorded on the same time scale, the following
proportionality holds,

tA(i) - tB(xf,)

L) = =8, 10 o (30)
and the average for N waves is
N
z L(<)
L= 4=1 . (31)
N

The values of wave surface elevation, n, and wave force, F,
occurring simultaneously for a given phase angle, 6, were also
averaged over N waves before being substituted into equations
(20), (21), (22) and (23} for evaluation of Cp and € . The values
of n were read from the upstream wave record after transposing the
phase angles, established on the basis of the wave record at the

pile, to account for the distance between the wave gages.
calculation of Correlation Parameters

The correlating parameters, such as Reynolds number, Iversen's
modulus and the Keulegan and Carpenter parameter. involve such
quantities as particle displacement, velocity and acceleration.
Since the waves in each set of experiments spanned a range of

wave characteristics, the distributions of dispiacement, velocity
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and acceleration with depth would also cover a range of possi-

bilities. Therefore, it seemed that root mean square values of

these kinematic quantities would be a reasonable representation.
The root mean square of horizontal particle velocity, U *

and acceleration, , at a given phase angle position were

4 rms
obtained on the basis of dividing the distance between the surface
elevation and the bottom of the wave tank into 13 equal intervals
and evaluating the horizontal particle velccity or acceleration at
each of the resulting 14 levels. The choice of interval size is
to some extent arbitrary, but it was felt that an interval size

of around two inches would be a reasonable choice if one attempted
to obtain experimental data for evaluation of particle velocity

or acceleration.

For evaluation of the root mean square of the total horizontal

particle displacement, E

s ? and the total vertical particle

displacement, Zipms? 2 s1ightly different breakdown of the depth
was used in order to more conveniently apply equations {18) and
(19). Here 12 intervals were taken, two inches apart, beginning
at the still water level and progressing to the bottom of the
wave tank,

The pile diameter (including the sand grains) was used in
evaluating the numerical values of the correlating parameters
which involved D as a characteristic length.

A computer program was written to perform the calculations

necessary in obtaining numerical values of the dimensionless
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parameters, as well as the drag and mass coefficients, needed for
analyzing the data. A step-by-step description of the computation

procedure and a listing of the program appear in Appendix 2.
Adaption of the Data to Theory

Some compromise was necessary in adapting the experimentally
obtained data to the theory used. First of all, the waves obfained
experimentally were not pure sinusoids and this resulted in the
wave profile trace having some finite magnitude at the phase
angles where a sinusoidal profile would have had zero surface
elevation with respect to the still water level. These finite
values of surface elevation were small and constituted only a
minor change when their values were added to or subtracted from
the water depth in the force equation {20).

A second adjustment of the experimental data arose in
connection with the wave forces. For the experiments involving
the larger wave heights, the model pile vibrated at its natural
frequency and these oscillations were superimposed on the force
traces. These oscillations were filtered out by dividing the peak
to peak distance of the pile oscillation in two and then fairing
a 1ine through these midpoints to obtain the actual force trace.
This fairing procedure was done by the same person for all of
the data and this fact, coupled with the averaging of at Teast
twenty values of force for calculation of any parameter involving

force, should, in the final analysis, essentially remove any



subjective element involved in comparing the differences between
the results obtained for each set of data.

Another problem arose due to development of long period waves
in the wave tank upon which the generated waves became superimposed
as an experiment progressed. The use of average values of the
wave characteristics obtained from a fa{rly large number of
waves, hopefully minimizes the effect of this source of error.

Consistency was maintained in all procedures invoived in the
gathering and reduction of the data. This aspect, in conjunction
with the ultimate aim of evaluating the differences in the results
obtained as the pile surface was prégressive1y roughened, should
render the influence of experimental deficiencies on the final

results small in magnitude.
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CHAPTER VI
DISCUSSION OF RESULTS

A plot of drag coefficient, CD’ versus Reynolds number,
Uyns D/v, obtained for the smooth and roughened surfaces is presented
in Fig. 16. The Reynolds number is based on the overall pile
diameter and the root mean square velocity obtained over the depth
span of the water. As mentioned in Chapter V, page 53, the root
mean square values were used for representing the velocity and
other particle kinematics since this provided a convenient means
of incorporating the range of possible depth variations of these
quantities into the final results. The values of Cn in Fia. 16
were obtained by using the Morison approach described in Chapter
II1. The scatter exhibited by these data is typical of that
obtained by other investigators using this approach (see Reference
[14]). MNo particulaf trends or groupings of the data with respect
to pile surface roughness appear for the four surfaces represented.
This observation would indicate that surface roughness has no

effect on C, — as obtained using the Morison approach.

D
The presently recommended value of CD for design is in the
range of 1.0 to 1.2 (see References [12] and [35]). The averages
of the data of Fig. 16 comply generally with these values, yielding
an overall average CD Tess than design values for Reynolds numbers

above 2 x 'IO4 while below Reynolds numbers of 2 x ]04, an apparent

increase in the overall average of Cpy to values above those recom-
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mended for design occurs for both the smooth and rough surface
conditions. These relatively high values of CD tend to occur when
the conditions of small wave steepness and, thus, small particle
velocities prevail. This tendency is consistent with that for
Taminar flow past a cylinder in steady flow [36].

The inadequacy of the semi-empirical method employed with
these data is evident from the fact that in some cases the attempt
to use the experimental data in conjunction with the analytical
expressions based on idealized assumptions resulted in negative
values of CD. These negative CD's, as well as the pronounced
scatter present in the results, apparently resulted from the, so
far, intractable aspect of adequately describing theoretically
the wave and force interactions with the pile. The wave profiles
obtained experimentally are not pure sinusoids as assumed in the
theory and this in turn yields a force response different to that
which would be obtained were the wave sinusoidal. This results in
a negative value of force occurring for a wave phase angle of 6,
in some cases. These negative forces, in turn, yield negative
values of CD when used in the Morison equation (20). The values
of CD were considered as absolute values for plotting purposes in
Fig. 16. The wave records were obtained at 100 mm/sec paper speed
on the recorders and the matching of the wave and force records in
time were considered accurate enough to preclude any pronounced
misreading of the wave and force records with respect to phase angle.

Fig. 17 shows a plot of inertia coefficient, C_, versus
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Reynolds number. These results were obtained using the Morison
approach and here, as in the case of CD’ there is no apparent effect
of surface roughness. The presently recommended value of Cm is

1.5 (see References [12] and [35]). The values of c, are congregated
around a value of 2.0 which is the theoretical value for a circular
cylinder in steady flow. This value is high when compared with

the accepted design value; however, the Cm's appear to be approaching
the value of 1.5 as the Reynolds number increases.

Fig. 18 presents a plot of all of the force data corresponding
to the wave phase angles o) and 6, at which the drag and inertia
coefficients, respectively, were evajuated. The data fall pre-
dominantly in the region where the inertia forces are larger than
the drag forces. This representation of ?hel and ?Bsz based on
experimental readings also yields no particular grouping of the
data with respect to degrees of surface roughness.

Plots of Cp and Cm using a procedure analogous to that employed
by Keulegan and Carpenter [13] appear in Fig. 19. In this figure,
the values of Cp and C_ were obtained using the Morison equation (20}.
The procedure for evaluating the period parameter, u. .. T/D, was
modified from that used by Keulegan and Carpenter [13]. The
period parameters in Fig. 19 were evaluated on the basis of root
mean square of velocity over the depth span of the water, whereas
the studies of Keulegan and Carpenter involved standing waves and
they used the maximum velocities in evaluating the period parameters.

Fig. 19 shows a general overlap of the data obtained from the
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experiments involving the various degrees of surface roughness
with the result that roughness appears to have no influence on

the correlations of CD and Cm with Uy T/D. The apparent

S
narrower scatter band for.CD in Fig. 19 compared with that in Fig.
16 is deceptive since the scale is linear in Fig;.ls‘and Togarithmic
in Fig. 16. o
An attempt to establish the effects of surface roughness using

an acceleration modulus is shown in Fig. 20. Here an acceleration
modulus,

ahrmsD

Urms
has been calculated for each experiment based on the root mean
square of horizontal particle velocity, Uy * and acceleration,

A s ? evaluated at phase angles 8, and e,, respectively.

The ordinate of Fig. 20 is a resistance coefficient, Curms’
calculated on the basis of equations {24) and (91). This choice

of parameters provides a fairly good correlation of the data, but,
as in the previous cases discussed, it fails to predict any measure
of the effects of surface roughness.

A1l of the figures discussed so far in this chapter have
resulted from some attempt to use theoretical expressions in
conjunction with certain experimentally measured quantities to
establish a suitable set of parameters for predicting the effects

of pile surface roughness on wave forces on piles. Since none of

the previous methods yielded a fruitful means of accomplishing this,
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an attempt was made to establish some relations using a purely
dimensional analysis approach as recommended by Paape and Breusers
[25]. It turned out that considerable additional data fnvo]ving
other water depths and pile diameters are needed before anything
conclusive can be established from using this method.

Despite the failures of the usual correlating methods to pre-
dict an effect of surface roughness on wave forces on piles, the
degree of roughness was found to influence the magnitude of the re-
sultant maximum force. For each experiment which involved both the
smooth and rough surfaces, the average maximum force occurring for
N waves was evaluated. Since the pile diameters of the roughened
surfaces were slightly larger than that for the smooth surface
pile, the average maximum force and the Reynolds number obtained
for each experiment with a rough surface were reduced by the ratio
of the rough to smooth diameters; i.e., by the ratic (DS + 25)/DS.
The modified maximum force on the pile was designated as F'mr and
the modified Reynolds number by (urms D/v)'. The ratio of Fﬁr to
the average maximum force for the smooth pile, Fms’ was evaluated
for each experiment and the result was plotted versus the cor-
responding modified Reynolds number for each experiment as shown in
Fig. 21. Here it may be seen, qualitatively, that as the degree of
surface roughness is increased, the ratio Fr;”,/Fms increases. A pos-
sible exception to this may occur at the lower Reynolds numbers,
especially in the case of small relative roughness. For these

latter conditions, it appears that a small degree of roughness
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results in the pile experiencing a smaller load than would be

the case if the pile were smooth, However, there appears to he a
point of diminishing return since the ratio Fr:",/Fms in general tends
to increase with surface roughness.

A more quantitative measure of the effects of surface rough-
ness is shown in Fig. 22. In this figure the average value of
Fr'm,/FmS has been determined for the data of each roughness which
fell in each Reynolds number interval of 1 x 104. The averages
were then plotted and the curves fitted through these points as
indicated in Fig. 22. Some of the scatter of the data in both
Figs. 21 and 22 result from the wave characteristics not being
exactly duplicated for the experiments conducted on each roughened
surface. The overall average increases in the modified force
ratio for roughnesses 1, 2 and 3 are -1, 9 and 14 percent, respec-
tively.

If no allowance is made for the increase in diameter due to
the presence of the sand grains, the overall average increases in
the force ratio for roughnesses 1, 2 and 3 are 1, 13 and 23
percent, respectively. The condition just described would be the
likely situation if a clean structural member were erected at an
offshore installation and then marine growth accumulated with
time. Thus, in view of the somewhat idealized conditions under
which the above evaluations of surface roughness were obtained

and also on the basis of the work of Blumberg and Rigg [2], it is

probable that the percentage increases in maximum forces which a
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prototype pile would have to sustain under field conditions would
likely be in excess of those given above.

It may be noted from the above discussion that no effects of
surface roughness were evidenced in the values of CD and Cm
obtained and yet a definite increase in the maximum force which
the pile had to withstand occurred as the roughness was increased.
This provides another example disclosing the Timitations of tHe
semi-empirical methods and perhaps adds support to the arguments of
Priest [24] and Paape and Breusers [25] that more emphasis be
placed on dimensional analysis techniques as a means of predicting
wave forces on piles.

The data from which the figures shown in this chapter were
derived are summarized in tabular form in Appendix 3. The trends
of the data were rather well established after analyzing the data
for the two roughest surfaces {nos. 2 and 3). Therefore it was
not necessary to reduce all of the roughness no. 1 data in order
to establish the effects of this level of roughness on the wave

forces on the pile.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The following conclusions may be drawn from this investigation

of the effects of surface roughness on the wave forces on a

circular cylindrical pile:

1.

The maximum force which the pile must sustain in response
to wave action is dependent upon the degree of surface
roughness. The results indicate that for relative rough-
nesses, /D, of 0.0075, 0.0186 and 0.0361, the average
increases in the ratio of average maximum force on the
rough pile to the average maximum force on the smooth

pile are -1, 9 and 14 percent, respectively, for the range
of Reynolds numbers studied. These percentages include a
reducing correction to compensate for the added diameter
due to the presence of the sand grains.

If the diameter including the sand grains is used in
evaluating the increases in maximum force due to roughness,
the overall average increases in the ratio of average
maximum force on the rough pile to the corresponding
average maximum force on the smooth pile are 1, 13 and 23
percent for relative roughnesses of 0.0075, 0.0186 and
0.0361, respectively. This condition would be the

more realistic situation in practice, since the pile
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would more than 1likely be relatively smooth at the time of
installation and would accumulate a marine growth on its
surface with the passage of time.

2. At Reynolds numbers below, say, 2 x 104 there is an
indication that a small degree of relative roughness
results in a decrease of the maximum force which the pile
must sustain. However, there appears to be a point of
diminishing return, since, in general, the maximum force
increases as the surface roughness is increased.

3. The accuracy of the semi-empirical methods used is not
sufficient to measure the effects of pile surface rough-
ness on wave forces. The simplifying assumptions used in
attempting to combine theory and experiment to obtain the
necessary coefficients for predicting wave forces on piles
results in an apparent sacrifice of accuracy beyond that
which permits the contribution due to surface roughness

to be evaluated.
Recommendations

A number of possibilities offer themselves as alternate
avenues of approach in investigating further the effects of surface
roughness and perhaps at the same time offering further insight
into the complications of the wave-force-pile problem. The follow-
ing three are suggested for consideration:

1. An attempt should be made to evaluate the particle
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velocities and accelerations experimentally for use in

the Morison equation (12) and the correlating parameters
which depend upon these kinematic quantities. One approach
could be to obtain these quantities through measurements
of velocity using a hot-film anemometer or, perhaps,
through photographic studies of the motions of polystyrene
beads suspended in the water as the wave action takes
place. This latter technique would also provide direct
measurements of horizontal and vertical particle displace-
ments of the particles in their orbit trajectories. The
same wave generator settings should be used for these
studies as were used for obtaining the force data presented
in this paper. This would provide a measure of compat-
ibility of all of the data even though the studies were
made at different times. By obtaining actual measurements
of velocity and, in turn, acceleration for use in the
Morison equation, the values of CD and Cm would then be
obtained on the basis of experimental data and the
dependence upon calculated velocities and accelerations
would be eliminated.

Another possibility which would maybe improve the results
obtained using semi-empirical methods would be to evaluate
the particle kinematics using Dean's [11] stream function
theory. Since this method may be applied to nonlinear

waves which have either symmetrical or unsymmetrical
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profiles with steepness up to breaking, it seems that this
method would have the potential of allowing for the
nonlinearities which were unaccounted for using the Tinear
wave theory. Hopefully, this refinement would give a
better rendition of the flow description and in turn
provide guantitative evaluation of the effects of surface
roughness.

Additional data are needed involving other water depths
and pile diameters (i.e. larger Reynolds numbers) in

order to adequately determine the effects of surface
roughness using a purely dimensional analysis approach.

A rather extensive addition of experiments would be
required. However, the data reduction time would be
substantially reduced since the need for reading wave
force and profile data with respect to appropriate phase

angles would be eliminated.
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APPENDIX 1

ELECTRICAL CIRCUITS

Capacitance Wave Gages

The circuitry used for each capacitance gage is shown in Fig.

23. This circuitry was designed so that the sigﬁa] induced by
the variation in capacitance as a wave passed the gage could be
recorded as a measure of water elevation by using a Hewlett-
Packard Model 321 Dual Channel Carrier Amplifier Recorder. The
circuit was designed by Miller [37], and an excerpt of his de-
scription of its operation is as follows:

The two transformers, the two .01 mfd capacitors
and the 1000 ohm resistor are mounted together close
to the capacitance probe itself. The transformers
take care of isolation and impedance matching functions.
The 0-12 transformer provides a floating center tapped
excitation source for the bridge. (The secondary of
this transformer constitutes one half of the bridge.)
Because of the high impedance of the bridge, it is
possible to use this transformer as a step up device
to deliver a higher voltage to the bridge than is
available at terminals B and D of the connector.

The bridge output appears across points a and b
as a voltage in series with a capacitance of 0.02
mfd., After transformation by the step down trans-
former, this signal appears at points x and y as a
smaller voltage in series with a capacitance of 0.6
mfd if the 0-0 transformer is used, and 0.4 mfd if
the 0-27 transformer is used. At the bridge exci-
tation frequency of 2400 Hertz, this corresponds
to a capacitance reactance of 100-150 ohms. For
proper operation of the balancing controls, the
Model 321 carrier amplifier normally expects to
Took back into a substantially resistive source.
For this reason the 1000 ohm resistor has been
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added to swamp cut the 100 ohm reactive impedance
of the bridge.

The pair of .01 mfd capacitors should be
matched within about one percent. The smaller
one can then be connected across the wire probe.

The dielectric constant of Teflon is 2.1, and
assuming that you use #20 wire with the standard
insulation thickness of .01 inches, the capacitance
change of the probe will be about 7.3 picofarads per
inch of immersion., After making allowance for the
transformer ratios and loading effects of the am-
plifier on the bridge, I would estimate a signal of
about 200 microvolts at the amplifier input for each
inch of immersion. This is enough to produce at
Teast two centimeters of deflection on the chart.
You would then be able to resolve water level changes
as small as one tenth of an inch.

Strain Gage Bridges

In strain gage circuits, use is made of the Wheatstone bridge
where one or more of the arms consist of a resistance strain
gage. If the assumption is made that such a bridge is initially
balanced and the changes in resistance of cne or more of the arms
are small, then the change in output voltage, Ae, is given very

closely by {see Reference [38])

Ao = Y RXRZ [ARX N &Ry + ﬂRZ . AR‘N] (32)
+ +
(Rx Ry)(Rz Rw) RX Ry RZ Rw
where the notation is as defined in Fig. 24.
By definition, the gage factor is given by (see References

[38] and [33])

)
[
=
be )

Gage Factor, G.F. (33)



Excitation
Yoltage

v

Change 1in
Jutput voltage

Oe- 0e — 30

Fig. 24 Schematic and notation
for a Wheatstone bridge
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where £ is the length of the strain gage before being strained
and A2 represents the change in length of the gage due to the
induced strain.

The denominator of equation {33) may be recognized as the
definition of strain, E. Therefore equation (33) may be re-

written in the form
é% = (6.F.)E, (34)

Making use of the general equation {34) in equation (32),
results in

RXRZ
(Rx + Ry)(RZ + Rw)

se =V (G.F.)[EX - Ey + Ez - Ew 1 {35)

Letting g = V RR; (G.F.) (36)
(Rx + Ry)(Rz ¥ Rw)
equation {35) becomes
he = B[Ex - Ey + Ez - Ew]_ (37)

The application of equation (37) to the bridges shown sche-
matically in Figs. 23b and 23c will now be demonstrated. The

resistors Rca1A and RcalB

known applied loads to the pile. These resistors were switched

shown in Fig, 23 were used to simulate

into the circuit before performing an experiment to establish
whether or not the bridge was functioning properly and still
maintained its calibration, These calibration resistors are
assumed to be switched off during the remainder of this discussion.

Considering the bridge for measuring bending moment, assume
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the force is applied to the pile as shown in Fig. 4 and that the
orientation of the strain gage positions conforms with that in Fig.
7. The strains for such a loading would be as shown in Fig. 25
where the plus and minus signs indicate tension and compression
of the gage elements, respectively.

Applying equation (37) to the conditions implied in Fig. 25
gives

te = g[+(-E,) - (+Eg) + (-E5) - (+£4)], (38)

Since gages 1 and 2 are diametrically opposite one another,
and likewise gages 5 and 6, the following relationships pertain

to the magnitudes of strain
£l = |&, (39)
£ = |E] (40)

If a cross section through gages 1 and 2 is designated A'
and a similar section through gages 5 and 6 is designated A" as
shown in Fig. 25, then, using equations {39) and (40}, equation

(38) may be written as
Ae = s[-ZEA. - ZEA"]. {41)

Applying the well-known relations for stress and strain

equation {41) becomes

EI
where MA' and MA” are the bending moments about sections A' and A"

My C MpucC
e = -2 3 ' 1] (42)
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shown in Fig. 25, E is the modulus of elasticity of the material,
I is the moment of inertia of the cross section about a line
through its center of gravity and ¢ is the distance from the
neutral axis to the outer fiber of the cross section.

Equation(42) may be expressed as
Ae o (MA| + MAII). ’ (43)

The moment bridge, in effect, measures the bending moment
at points an equal distance above and below the midline of the
gage section and then averages the two values of moment to obtain
the average moment about the midline of the gage section.

The bridge employed as a force transducer will now be
described. Again, assume the same load application and orientation
as shown in Figs. 4 and 7, The strains for such a loading would
be as shown in Fig. 26.

Applying equation (37) to the conditions implied in Fig. 26
gives

Ae = B[+(’E4) - ('ES) + (+E7) - (+E3)]. (44)

By an argument which parallels that presented in regard to
equations (38), (39) and (40), and designating the cross sections
at the gages as @ and @ as shown in Fia. 26a, equation (44) may
be written

se = s8[-2gp + 2Rp). (45)

Rewriting gp and gz using the well-known expressions for

stress and strain, equation (45) becomes
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se = -2e[ % " 1% ] (46)

Therefore the output of the bridge in Fig. 23c is proportional

to the difference in bending moment at the section Qand @, i.e.,

Ae o (%D - wzg. (47)
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APPENDIX 2
DATA REDUCTION PROGRAM

The program was written to perform the necessary calculations
for obtaining drag and mass coefficients along with the dimension-
less parameters needed for analyzing the data. The theory behind
the equations used and the general procedures involved in its
application to experimental data were discussed in Chapters IlII
and V. However, a number of intermediate steps involved in the
calculations were not discussed in detail. The purpose of this
appendix is to show these details in a step-by-step sequence as
they are programmed for the computer. The steps are Tisted
numerically as follows:

1. The following data are read, in the order shown, as single

values pertaining to a given experiment:

Nr’ Nmo’ Nda’ Nyr’ Nkin’ Ndisp’ Npad’ Nv
Nsp’ Spatfr O1s B2 Leges Lavm® € Tyert?
Ds’ d, KG, g, Tw’ p, and v.

2. Some additional data are input as arrays for purposes of
calculating averages. [ach array consists of Nv values.
For some arrays, the data from the records are read with
respect to certain phase angle designations. The phase
angle at the crest is called o,; the phase angle one-

fourth of a period after s is called 8,. The following
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arrays are input in the order listed:

H('L)s F (&)9 Fhel(’i')s Fhez(’{—)a ﬂel(i—)

himax

n ()0 ty(0)s Ta(4): tgld), and £y, ()

82
Preliminary calculations are made to calculate o, and 6,
in terms of degrees for listing purposes and to calculate

the diameter of the pile including the sand grains, D; i.e.,

_ 180
edeq = =" Bags and {48)
D= Dg + 2e. (49)

Twenty wave heights, H({), are averaged and a check fis
made to ascertain that the change in the average wave
height, H, due to the addition of more values remains
Tess than one percent. If additional values are needed
to comply with this criterion, they are added one at a
time until the criterion is met. The average is obtained

from the following relationship:

H= 4=1__ . (50)
0

Twenty maximum (peak) wave forces, Fhmax(i)’ are averaged
and a check is made to ascertain that the change in the
average wave force, ?Hmax’ due to the addition of more
values remains less than one percent. [f additional
values are needed to comply with this criterion, they

are added one at & time until! the criterion is met.
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The average is obtained from the relationship:

? Fhmax(’{‘)

= =] ] {51}

.
hmax 55

(<)

was needed to meet the criteria specified for H and

Occasionally an additional value of H(<) or Fimax

“hmax®
but this was never more than one additional value for

these experiments.

Letting N equal the number of waves to be averaged, the
average wave period based on the time span from when the
first wave height is measured, tH(1), to the time when

the last wave height is measured, tH(N + 1), is calculated;

i,e.,

N
The average wave length, L, for the N waves is determined

from the following relation developed in chapter V,

page 52:

N : .
2, tAEL; — tB(t)) .
t A - t 1 (
r- &1 A A . (53)
N

The average horizontal wave force which occurs at a phase

angle of 6y, ?Hel’ is calculated from

i Fhel (&)

- & _ (54)
N

-

ho,



10.

11,

12.

The average wave surface elevation above the bottom at

a phase angle of &, 3;91, is calculated from (see Fig.

N
Z [ng, (4) + d]
Ssop oL - (55)

2, page 18)

For a phase angle of 6y, the constant Kiﬁl based on the
values of L and §§91 obtained from steps 7 and 9, re-
spectively, is calculated. The following relation applies
(see equation (21), page 21):

41S + sinh f4q5

$90) 56
Kjo, = 2L 5k : (56)
16 [sinh(—{--)
C

The drag coefficient, Cp» based on the average quantities
obtained in the previous steps is calculated. The
following relationship applies for a value of 6, = 0° (see

equation (20), page 21):

- T’ ] "he . (57)
D mpD HQE- [K181|COS 81|C05 81]

The average horizontal wave force which occurs at a phase

angle of 8,, Fhez’ is calculated from

Z Fhe, ()

F =1
hep = S . (58)



13.

14,

15.

16.

The average wave surface elevation above the bottom at

a phase angle of 6,, §;82, is calculated from (see Fig. 2,

N
:E: [ng, (<) + d]
e e (59)

page 18)

SSG

For a phase angle of &,, the constant Kéezbased on the

values of L and §;82 obtained from steps 7 and 13,

respectively, is calculated. The following relation

applies (see equation (22), page 21):

sinh | <" Ssez

Kée = L . (60)
) A
sinh {2nd/L)

The mass coefficient, Cm, based on the average force and
wave characteristics obtained in the previous steps is
calculated. The following relationship applies for a

value of 6, = 90° (see equation (20), page 21):

¢ =-|_T J M Fre, . (61)
__ i T
ﬂpDHQL =D KZBZSInBZ

The average wave surface elevation with respect to the

still water level at a phase angle of 8; is calculated.
This quantity, 561’ is given by

N

IR

21 -
Mgy = é;—“1¢*—-— (62)



17.

18.

18.

a3

This quantity is shown geometrically in Fig. 27a which
also geometrically describes some other quantities which
will arise in some of the later steps.
The interval size to be used in evaluating the values
of velocity at different depth-levels in the fluid
is calculated. Referring to Fig. 27a, this quantity,
Aiv, is given by

R

i = ——— (63)

v Nyin
The total number of values of velocity to be calculated
over the depth span of the water is designated by M =
(Nkin + 1). Then, at the phase angle &, each of the
distances, yel(j), from the still water level down to a

water particle situated at each depth-level, §, is

calculated from

1y, () = [Ry = Mg 0e1)] (62)

where Nintj is the number of intervals (start with zero)
down to the jth level. There will be M values of yel(j).
After calculating the array of values of yel(j), the
array of velocities, uel(j), for the j-levels in the
fluid may be calculated. These are obtained from (see
equation (15), page 19)

cosh [%"(ye1(f) +d)

L ] cos ) (65)
sinh 2nd/L
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20,

21.

22,
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where the values of H, T and L are those obtained from
steps 4, 6 and 7, respectively.
The root mean square of the horizontal particle velocity,

Upns ® is calculated from
M 1
2
:E: [uel(j)]
izl :
M

The total number of values of total vertical particie

Yrms = (66)

displacement, cz,. to be calculated over the depth span
of the water is designated as K = (Ndisp + 1). Then,

for the phase angle &y, each of the distances, yoel(j),
from the still water level down to the mean vertical
coordinate of a water particle whose orbit is centered
at each depth-level, j, is calculated {see Fig. 27b}:
i.e.,

)] (67)

where the length of each interval is 2 inches, and, again,

N is the number of intervals {start with zero} down

ints
to tie fth level. There will be K values of ybel(j).
After calculating the array of values of yoel(f), the
array of total vertical particle displacements, ctsl(j).
for the j-levels in the fluid may be calculated (see

Fig. 27b). These are obtained from {see equation (19},

page 20}
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sinh [%“(yOGI(j) ¥ d)}
() =H L J_cos o (68)

“te, —
sinh Z2wd/L

where the values of H and L are those obtained from steps
4 and 7, respectively.
23. The root mean square of the total vertical particle

displacement, ¢, .. » is calculated from

- .
37 Logg, (1°
=\l =1 .

Styms - z

(69)

24, The average wave surface elevation with respect to the
still water level at a phase angle 6, is calculated.

This quantity, ﬁé , is given by
2

n, (4)
82
., = A=l . (70)

82 B Y E—

N
This quantity is shown geometrically in Fig. 28a which

N
A

also geometrically describes some other quantities which
will arise in some of the later steps.

25. The interval size to be used in evaluating the values
of acceleration at different levels in the fluid is
calculated. Referring to Fig. 28a, this quantity, aia,
is given by

(d+mng ) | (71)
Nk.
mn

Al
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26.

27.

28.

98

The total number of values of acceleration to be calculated
over the depth span of the fluid is designated as M =

(Nkin +1). Then, at the phase angle 6,, each of the
distances, yez(j), from the still water level down to a
water particle situated at each depth-level j is
calculated; i.e.,

Jai,)] (72)

yGQ(j) - [nﬁz - (Nintj

where, again, is the number of intervals (start

Nintj
with zero) down to the jth level. There will be M
values of yez(j).
After calculating the array of values of Yo (), the

2
array of horizontal accelerations, ahaz(j)’ for the j-

levels in the fiuid may be calculated. These are

obtained from (see equation (17}, page 20)

_ cosh [ZW(YOE(f) + d)}
2 M L sine, (73)

_2 —~
sinh 2nd/L

ahﬁz(j) = -

T

where the values of H, T and L are those obtained from
steps 4, 6 and 7, respectively.
The root mean square of the horizontal particle accel-

eration, , is calculated from

M
S L3y, (11’
i1 _ (74)

M

hrms

Ahems




29,

30.

31.

99

The total number of values of total horizontal particle
displacement, & to be calculated over the depth span

of the water is designated as K = (N 1). Then,

disp *
for the phase angle 8,, each of the distances, yOBQ(j),
from the still water level down to the mean vertical
coordinate of a water particle whose orbit is centered
at each depth-level, §, is calculated {see Fig. 28b);
i.e.,

yﬂﬁz(‘{) = - [2(N1nt1)3 (75)

where the Tength of each interval is 2 inches and, as
before, Nintj is the number of intervals {start with

zero) down to the jth level. There will be K values of
Yo, 150

After calculating the array of values of yﬂez(f)! the
array of total horizontal particle displacements, %Bz(j)’
for the j-levels in the fluid may be calculated (see Fig.

28b). These are obtained from (see equation (18), page 20)

cosh [}2“ynez(j) * d)}
o, f) = H r sino,. {76)

sinh 2nd/L

The root mean square of the total horizontal particle

displacement, & rms * is calculated from

K L
S [, (D7

%rms - {=1 K ! (77)




34.

35.

a b
1 = h;ms___
ur‘ms
d
poo=
d gTQ
H
P = o
H gTQ
_ Fhmax
Pp=—7
pgD” H
p _H
P*H
= £
Ps D
c - 2 Fhimax
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(85)

{86}

(87)

(88)

(89)

(90}

(91}

The program prints the following quantities as output:

Nr’ Nmo’ Nda’ Nyr’ £arm’ Shalf’ Nsp’ Npad’

DS’ £y U, PS’ d, £ ‘eGs d, TW’ Os Vs

vert’

L N, 81’ 82’ H, Fhmaxg T, L, Fhels

est’

C,, C., U

D’ “m v

F, a
Fhez’ rms> “hrms® “m’ dhmax’

R s

Etyms® Strms’ fmax’ “tmax’ rms’ 'pu

fpg’ I, Curms’ Pd’ PH’ PF’ Pp

The program is written to accept the data for the next

experiment and repeat the same computations starting

with step no. 1.
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The symbols employed in coding the equations discussed in this
appendix are identified in Table 3 along with a specification of

the units required. A listing of the program follows Table 3.
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Table 3 Variables for FORTRAN computer program

FORTRAN Equation Units used in
Symbol Notation the program
AHMAX Ay max EE%T
AHRMS s Eggf
AHT2(1) ahez(j) EE%T
CSUBD CD -
CSUBM Cm -
CIRMU Curms -
DBPIL DS in
DTHET1 (l%g)el Deq
DTHET2 (l%g)ez Deg
DPILE D in

DWAT d ft

ESTL Loct ft
ETA1(1) nel(i) in
ETA2(1) nez(i) in



Table 3 (Continued)

104

FORTRAN Equation Units used in
Symbol Notation the program

ETAB1 ﬁé] in

ETAB2 o, in

ETMAX Gmax in
ETT2(1) Etez(j) in
ETZRMS %rms in
FBTHT? fhel Tbe
FBTHT2 ?562 1bf
FBWAVE Fomax Tb,
FSUBPE pr -
FSUBPV fpu -
FTHET1(I) Fhe, () be
FTHET2(I) Fog, t€) 1bg
FWAVE(I) Fhmax(i) Toe

G g



Table 3 (Continued)
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FORTRAN Equation Units used in
Symbol Notation the program
HBWAVE H in
HSTR Shalf in
HWAVE (1) H{i) in
1A 1 -
INTI aiv in
INT? Aia in
s ] -
KP11 K]81
I -
KP22 K292
| BAR N ft
L GAGE ﬁG ft
L VERT Kvert in
NDA Nda
NMO Nmo -
NOID N -

disp



Table 3 (Continued)

FORTRAN Equation Units used in
Symbol Notation the prodram
NOIK Nkin -
NPAD Npad -
NRUN Nr -
NY N -
v
NWAVE N -
NYR N -
yr
PERS NSp 9
PSUB -
D Pd
PSUBF
P _
PSUBH
U PH -
PSUBP
PP -
RERMS
ers -
RHO
p slu%s
ft
SAND
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Table 3 (Continued)

FORTRAN Equation Units used in
Symbo] Notation the program
SAPBL zarm in
SPAR PS -
SUBST 3;81 ft
SUBS2 §sez ft
TBAR T sec
THETA1 81 rad
THETAZ2 89 rad
TSUBA(1) ta(4) sec
TSUBAP(I) ta (4) sec
TSUBB(1) tB(i) sec
TSUBH(I) t,(4) sec
TWAT T, °F
UHMAX u, ft
sec
UHRMS Uyms ft_

sec
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Table 3 {(Continued)

FORTRAN Equation Units used in
Symbol Notation the program
uTI(1) ug () 7t
1 sec
VISC v ft2
sec
WAVE N -
YT1(I) yel(j) in
Y12(1) yez(j) in
YOT1(1) y091(j) in
YoT2(1) Yo, () in
ZTAMAX  tmax in
ZTAMS] L s in

ZTATTI(1) o, 17) in
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APPENDIX 3
TABLES OF DATA

The tables in this appendix contain the data necessary for
reproducing the experiments as well as a collection of the pertinent
quantities obtained from the computer computations and used in
evaluating the effects of surface roughness on the wave forces on
a circular cylindrical pile.

Table 4 contains a summary of the water properties employed
in the computations for each experiment. These water properties
were interpolated from data given by Rouse [40].

Table 5 gives a summary of the wave generator settings and
jdentifies the experiments which were made using each combination
of half-stroke and percent speed setting. Also included is a
statement of the £ . Npad and £q values which were used for all
of the experiments.

Tables 6 through 17 summarize the results obtained from the
computer computations of the parameters indicated. The notation
in the table headings may be identified by referring to the List

of Symbols.
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Table § Summary of half-stroke and percent

speed settings for the wave generator

(ﬁarm = 62 in, Npad =1, £G 7 ft)
Generator setting
Eﬁperimﬁnts on
A N which the generator
half sp settings were used
(in) (-)
(.55 76.0 1, 23, 45, 67
1.05 77.0 2, 24, 46, 68
1.40 75.0 3, 25, 47, 69
0.60 63.0 4, 26, 48, 70
1.18 63.0 5, 27, 49, 71
1.75 62.0 6, 28, 50, 72
2.20 64.0 7, 29, 51, 73
0.70 52.0 , 30, 52, 74
1.35 51.0 9, 31, 53, 75
2.00 50.0 10, 32, 54, 76
2.70 52.0 11, 33, 55, 77
3.05 54,0 12, 34, 56, 78
0.90 45.0 13, 35, 57, 79
1.75 45.0 14, 36, 58, 80
2.60 45,0 15, 37, 59, 81
2.80 45.0 16, 38, 60, 82
3.60 47.0 17, 39, 61, 83
1.00 42.0 18, 40, 62, 84
1.83 42,0 19, 41, 63, 85
2.65 39.5 20, 42, 64, 86
3.30 39.0 21, 43, 65, 87
3.90 41.0 22, 44, 66, B8
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